

## 11 <br> AIIMS <br> 

## Motion

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |凶: info@motion.ac.in


## हमारा विश्वास... हर एक विद्यार्यी है खुास

1. The potential energy curve for the $\mathrm{H}_{2}$ molecule as a function of internuclear distance is:
(1)

(2)

(3)

(4)


Sol. 2

2. The most appropriate reagent for conversion of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ into $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is:
(1) $\mathrm{NaBH}_{4}$
(2) $\mathrm{Na}(\mathrm{CN}) \mathrm{BH}_{3}$
(3) $\mathrm{CaH}_{2}$
(4) $\mathrm{LiAlH}_{4}$

Sol. 4
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
3. Which of the following is not an essential amino acid?
(1) Valine
(2) Tyrosine
(3) Lysine
(4) Leucine

Sol. 2
Tyrosine in not an essential amino acid
4. Which of the following derivatives of alcohols is unstable in an aqueous base?
(1)

(2)

(3) $\mathrm{RO}-\mathrm{CMe}_{3}$
(4)


Sol. 1
Hydrolysis of ester occurs in basic medium.
5. The structure of $\mathrm{PCl}_{5}$ in the solid state is:
(1) Square planar $\left[\mathrm{PCl}_{4}\right]^{+}$and octahedral $\left[\mathrm{PCl}_{6}\right]^{-}$
(2) Tetrahedral $\left[\mathrm{PCl}_{4}\right]^{+}$and octahedral $\left[\mathrm{PCl}_{6}\right]^{-}$
(3) Trigonal bipyramidal
(4) Square pyramidal

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## छमारा विश्वास... हर एक विद्यार्थी है ख़ास

## Sol. 2

In solid state $\mathrm{PCl}_{5}$ exist in Ionpair i.e. $\left(\mathrm{PCl}_{4}^{+}\right)$and $\left(\mathrm{PCl}_{6}{ }^{-}\right)$
$\mathrm{PCl}_{4}^{+}\left(\mathrm{sp}^{3}\right.$ tetrahedral)
$\mathrm{PCl}_{6}{ }^{-}\left(\mathrm{sp}^{3} \mathrm{~d}^{2}\right)-$ octahedral $)$
6. A diatomic molecule $X_{2}$ has a body-centred cubic (bcc) structure with a cell edge of 300 pm . The density of the molecule is $6.17 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of molecules present in 200 g of $X_{2}$ is:(Avogadro constant $\left.\left(N_{A}\right)=6 \times 10^{23} \mathrm{~mol}^{-1}\right)$
(1) $8 \mathrm{~N}_{\mathrm{A}}$
(2) $2 \mathrm{~N}_{\mathrm{A}}$
(3) $40 \mathrm{~N}_{\mathrm{A}}$
(4) $4 \mathrm{~N}_{\mathrm{A}}$

Sol. 4
$\mathrm{X}_{2} \rightarrow \mathrm{BCC}$
$a=300 \mathrm{pm}$
$\mathrm{d}=6.17 \mathrm{~g} / \mathrm{cm}^{3}=\frac{2 \times \mathrm{GMM}}{6 \times 10^{23} \times\left(300 \times 10^{-10}\right)^{3}}$
GMM $=\frac{6.17 \times 6 \times 9 \times 3 \times 10^{-1}}{2}$
GMM $=81 \times 6.17 \times 10^{-1}$

$$
=49.97 \mathrm{~g} / \mathrm{mol}
$$

No. of molecules $=\frac{200 \mathrm{~g}}{49.97 \mathrm{~g} / \mathrm{mol}}=4 \mathrm{~mol}$

$$
=4 \mathrm{~N}_{\mathrm{A}}
$$

7. The equation that represents the water-gas shift reaction is:
(1) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\text { Catalyst }]{673 \mathrm{~K}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
(2) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{~N}_{2}(\mathrm{~g}) \xrightarrow{1273 \mathrm{~K}} 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{~N}_{2}(\mathrm{~g})$
(3) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{1270 \mathrm{~K}} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(4) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\mathrm{Ni}]{1270 \mathrm{~K}} \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Sol. 1
Fact
8. The increasing order of the acidity of the $\alpha$-hydrogen of the following compounds is:

(A)

(B)

(C)

(D)
(1) (D) $<$ (C) $<$ (A) $<$ (B)
(2) $($ A $)<(C)<$ (D) $<$ (B)
(3) (C) $<$ (A) $<$ (B) $<$ (D)
(4) $(B)<(C)<(A)<(D)$

## CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## Go Premium at ₹ 1100

## हमारा विश्वास... ह एक विद्यार्थी है ख़ास

Sol. 1
Stability order

9. Identify the correct molecular picture showing what happens at the critical micellar concentration (CMC) of an aqueous solution of a surfactant ( polar head; mon-polar tail; e water).

(A)

(B)

(C)

(D)
(1) (B)
(2) (A)
(3) (C)
(4) (D)

Sol. 4

10. If a person is suffering from the deficiency of nor-adrenaline, what kind of drug can be suggested?
(1) Antihistamine
(2) Antidepressant
(3) Anti-inflammatory
(4) Analgesic

## Sol. 2

If nor-adrenaline is low, person may suffer from depression. Hence, anti depressant drug is suggested.
11. The values of the crystal field stabilization energies for a high spin $d^{6}$ metal ion in octahedral and tetrahedral fields, respectively, are:
(1) $-2.4 \Delta_{0}$ and $-0.6 \Delta_{t}$
(2) $-1.6 \Delta_{\mathrm{o}}$ and $-0.4 \Delta_{\mathrm{t}}$
(3) $-0.4 \Delta_{o}$ and $-0.27 \Delta_{t}$
(4) $-0.4 \Delta_{\mathrm{o}}$ and $-0.6 \Delta_{\mathrm{t}}$

Sol. 4
$d^{6}($ octahedral $) \rightarrow$ high spin complex

$$
\begin{aligned}
&=\mathrm{t}_{2 \mathrm{~g}^{4}} \mathrm{eg}^{2} \\
& \text { CFSE }=\left(-\frac{2}{5} \times 4+\frac{3}{5} \times 2\right) \Delta_{0} \\
&=\left(\frac{-8+6}{5}\right) \Delta_{0} \\
&=-0.4 \Delta_{0} \\
& \mathrm{~d}^{6}(\text { tetrahedral }) \rightarrow \text { high spin complex } \\
&=\mathrm{eg}^{3} \mathrm{t}_{2 \mathrm{~g}^{3}} \\
& \text { CFSE }=\left(-\frac{3}{5} \times 3+\frac{2}{5} \times 3\right) \Delta_{\mathrm{t}} \\
&=-0.6 \Delta_{\mathrm{t}}
\end{aligned}
$$

## CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## Go Premium at ₹ 1100

## छ्मारा विश्वास... हर एक विद्यार्थी है खुास

12. A flask contains a mixture of compounds $A$ and $B$. Both compounds decompose by first-order kinetics. The half-lives for $A$ and $B$ are 300 s and 180 s , respectively. If the concentrations of $A$ and $B$ are equal initially, the time required for the concentration of $A$ to be four times that of $B$ (in s) is: (Use $\ln 2=0.693$ )
(1) 180
(2) 300
(3) 120
(4) 900

Sol. 4
$A_{t}=A_{0} \cdot e^{-k_{1} t}$
$B_{t}=B_{0} \cdot e^{-k_{2} t}$
$\mathrm{k}_{1}=\frac{\ln 2}{300}$
$\mathrm{k}_{2}=\frac{\ln 2}{180}$
$A_{t}$ and $B_{t}$ are related as [A] $=4[B]$
$A_{0} \cdot e^{-k_{1} t}=4 \times B_{0} \cdot e^{-k_{2} t}$
$\frac{t}{180}-\frac{t}{300}=2$
$\frac{t}{3}-\frac{t}{5}=120$
$\frac{2 \mathrm{t}}{15}=120$
$\mathrm{t}=900 \mathrm{sec}$
13. The increasing order of basicity of the following compounds is:

(A)

(B)

(C)

(D)
(1) (D) $<$ (A) $<$ (B) $<$ (C)
(2) $($ A $)<($ B $)<$ (C) $<$ (D)
(3) $($ B $)<$ (A) $<$ (D) $<$ (C)
(4) $(\mathrm{B})<(\mathrm{A})<(\mathrm{C})<(\mathrm{D})$

Sol. 4
Correct order of basicity


## CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## Go Premium at ₹ 1100

## छमारा विश्वास... हर एक विद्यार्थी है ख़ास

14. The condition that indicates a polluted environment is:
(1) pH of rain water to be 5.6
(2) BOD value of 5 ppm
(3) $0.03 \%$ of $\mathrm{CO}_{2}$ in the atmosphere
(4) eutrophication

## Sol 4

Eutrophication is the condition in which excessive richness of nutrients in a lake or water body, which causes dense growth of plant life and BOD increases.
15. In the sixth period, the orbitals that are filled are:
(1) $6 s, 5 d, 5 f, 6 p$
(2) $6 s, 4 f, 5 d, 6 p$
(3) $6 s, 6 p, 6 d, 6 f$
(4) $6 s, 5 f, 6 d, 6 p$

Sol. 2
(Fact) $\rightarrow$ energy order of orbital's according to Aufbau principle
$6 s<4$ f $<5 d<6 p$
16. The difference between the radii of $3^{\text {rd }}$ and $4^{\text {th }}$ orbits of $\mathrm{Li}^{2+}$ is $\Delta \mathrm{R}_{1}$. The difference between the radii of $3^{\text {rd }}$ and $4^{\text {th }}$ orbits of $\mathrm{He}^{+}$is $\Delta \mathrm{R}_{2}$. Ratio $\Delta \mathrm{R}_{1}: \Delta \mathrm{R}_{2}$ is:
(1) $8: 3$
(2) $3: 8$
(3) $3: 2$
(4) $2: 3$

Sol. 4
$\left(R_{4}-R_{3}\right)_{\mathrm{Li}^{+2}}=\frac{0.529}{3}\left\{4^{2}-3^{2}\right\}=\Delta \mathrm{R}_{1}$
$\left(R_{4}-R_{3}\right)_{\mathrm{He}^{+2}}=\frac{0.529}{2}\left\{4^{2}-3^{2}\right\}=\Delta R_{2}$
$\frac{\Delta \mathrm{R}_{1}}{\Delta \mathrm{R}_{2}}=\frac{1 / 3}{1 / 2}=\frac{2}{3}$
17. In the following reaction sequence the major products $A$ and $B$ are:

(1) $A=$

(2) $A=$
 $B=$

(3) $A=$

(4) $A=$
 ; $B=$


CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## Go Premium at ₹ 1100

- Doubt Support Advanced Level Test Access
- Live Test Paper Discussion * Final Revision Exercises


## हमारा विश्वासा... ह एक विद्यार्यी है ख़ास

Sol. 4


18. The correct electronic configuration and spin-only magnetic moment (BM) of $\mathrm{Gd}^{3+}(Z=64)$, respectively, are:
(1) [Xe] $5 f^{\prime}$ and 7.9
(2) $[\mathrm{Xe}] 4 \mathrm{f}^{7}$ and 7.9
(3) $[\mathrm{Xe}] 5 \mathrm{f}^{\prime}$ and 8.9
(4) $[\mathrm{Xe}] 4 \mathrm{f}^{7}$ and 8.9

Sol. 2
Gd $\quad \rightarrow[\mathrm{Xe}]^{54} 4 f^{7} 5 d^{1} 6 s^{2}$
$Z=64$

$$
\downarrow-3 e^{\ominus}
$$

$\mathrm{Gd}^{+3}=[\mathrm{Xe}]^{54} 4 \mathrm{f}^{7}$
$\mu=\sqrt{7(7+2)}=\sqrt{63}$
$=7.9 \mathrm{BM}$
19. An Ellingham diagram provides information about:
(1) The pressure dependence of the standard electrode potentials of reduction reactions involved in the extraction of metals.
(2) The conditions of pH and potential under which a species is thermodynamically stable.
(3) The kinetics of the reduction process.
(4) The temperature dependence of the standard Gibbs energies of formation of some metal oxides.

Sol. 4
Fact

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

## हमारा विश्वास... हर एक विद्यार्यी है ख़ास

20. Consider the following reaction:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=+58 \mathrm{~kJ}$
For each of the following cases $(a, b)$, the direction in which the equilibrium shifts is:
(a) Temperature is decreased.
(b) Pressure is increased by adding $\mathrm{N}_{2}$ at constant T .
(1) (a) towards reactant, (b) towards product
(2) (a) towards reactant, (b) no change
(3) (a) towards product, (b) towards reactant
(4) (a) towards product, (b) no change

Sol. 2
$\xrightarrow[\substack{\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \\ \Delta \mathrm{H}^{\circ}=+58 \mathrm{~kJ}}]{\rightleftharpoons} 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}=+58 \mathrm{~kJ}$
(towards reactant)
(a) temp $\downarrow \Rightarrow$ Backward shift as it is endothermic reaction
(b) As ' $\mathrm{N}_{2}$ ' will not react with both $\mathrm{N}_{2} \mathrm{O}_{4} \& \mathrm{NO}_{2}$, as moles increases in reactants, as much as in products, $a=$ hence there is no change in equilibria.
$\therefore$ no change
21. The minimum number of moles of $\mathrm{O}_{2}$ required for complete combustion of 1 mole of propane and 2 moles of butane is $\qquad$ .

## Sol. 18

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
1 mol 5 mol
$\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
2 mol 13 mol
Total required mol of $\mathrm{O}_{2}=5+13=18$
22. The number of chiral carbon(s) present in piptide, Iie-Arg-Pro, is $\qquad$ .
Sol. 4

23. A soft drink was bottled with a partial pressure of $\mathrm{CO}_{2}$ of 3 bar over the liquid at room temperature. The partial pressure of $\mathrm{CO}_{2}$ over the solution approaches a value of 30 bar when 44 g of $\mathrm{CO}_{2}$ is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is $\qquad$ $\times$ $10^{-1}$.
(First dissociation constant of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.0 \times 10^{-7} ; \log 2=0.3$; density of the soft drink $=1 \mathrm{~g} \mathrm{~mL}^{-1}$ )

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available on YouTube

## Go Premium at ₹ 1100

- Doubt Support Advanced Level Test Access
- Live Test Paper Discussion * Final Revision Exercises


## ह्मारा विश्वास... हर एक विद्यार्यी है ख़ास

Sol. 37
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
30 bar $\ldots \ldots \ldots \rightarrow 1 \mathrm{~m} / \mathrm{lit}$.
3 bar $\ldots \ldots \ldots \rightarrow 0.1 \mathrm{~m} / \mathrm{lit}$

$4 \times 10^{-7}=\frac{0.1 \alpha^{2}}{1-\alpha}$
$(1-\alpha) \simeq 1$
$\alpha^{2}=4 \times 10^{-6}$
$\alpha=2 \times 10^{-3}$
$\left[\mathrm{H}^{+}\right]=2 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-[-4 \times \log (2)]=3.7=37 \times 10^{-1}$
24. An oxidation-reduction reaction in which 3 electrons are transferred has a $\Delta \mathrm{G}^{0}$ of $17.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. The value of $\mathrm{E}_{\text {cell }}^{\circ}$ (in V ) is $\qquad$ $\times 10^{-2}$.
( $1 \mathrm{~F}=96,500 \mathrm{C} \mathrm{mol}^{-1}$ )
Sol. 6
$\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}{ }^{\circ}$
$17.37 \times 1000=-3 \times 96500 \times \mathrm{E}^{\circ}$
$\mathrm{E}^{\circ}=\frac{17370}{3 \times 96500}$
$\mathrm{E}^{\circ}=\frac{579}{9650}$ volt

$$
=0.06=6 \times 10^{-2} \text { volt }
$$

Ans. 6
25. The total number of coordination sites in ethylenediaminetetraacetate (EDTA ${ }^{4-}$ ) is $\qquad$ .
Sol. 6
EDTA ${ }^{4-}$ is hexadentate ligand

# Admission <br> जब इन्हीने पूरा किया अपना सपना तो आप भी पा सकते है लेक्द्य अपना 

## JEE MAIN RESULT 2019



## KOTA'S PIONEER IN DIGITAL EDUCATION 

| SERVICES |  |  | SILVER |
| :--- | :---: | :---: | :---: |
| Classroom Lectures (VOD) |  |  |  |
| Live interaction | NA |  |  |
| Doubt Support | NA |  |  |
| Academic \& Technical Support | NA |  |  |
| Complete access to all content | NA |  |  |
| Classroom Study Material | NA |  |  |
| Exercise Sheets | NA |  |  |
| Recorded Video Solutions | NA |  |  |
| Online Test Series | NA |  |  |
| Revision Material | NA |  |  |
| Upgrade to Regular Classroom program | Chargeable | Chargeable | Free |
| Physical Classroom | NA | NA |  |
| Computer Based Test | NA | NA |  |
| Student Performance Report | NA | NA |  |
| Workshop \& Camp | NA | NA |  |
| Motion Solution Lab- Supervised | NA | NA |  |
| learning and instant doubt clearance |  |  |  |
| Personalised guidance and mentoring | NA | NA |  |


| FEE STRUCTURE |  |  |  |
| :---: | :---: | :---: | :---: |
| CLASS | SILVER | GOLD | PLATINUM |
| 7th/8th | FREE | ₹ 12,000 | ₹ 35,000 |
| 9th/10th | FREE | ₹ 15,000 | ₹ 40,000 |
| 11th | FREE | ₹ 29,999 | ₹ 49,999 |
| 12th | FREE | ₹ 39,999 | ₹ 54,999 |
| 12th Pass | FREE | ₹ 39,999 | ₹ 59,999 |

+ Student Kit will be provided at extra cost to Platinum Student.
* SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
** GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
*** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from :
16 \& 23 September 2020
Zero Cost EMI Available

